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A study is made of the statistical mechanics of classical lattice spin systems 
with finite-range interactions in two dimensions. By means of a decimation 
procedure, a finite-size condition is given for the convergence of a cluster expan- 
sion that is believed to be useful for treating the range of temperature between 
the critical one Tc and the estimated threshold To of convergence of the usual 
high-temperature expansion. 

KEY WO R DS: Lattice spin systems: cluster expansion; analyticity; finite-size 
conditions. 

1. I N T R O D U C T I O N  

In this paper we study some aspects of the statistical mechanics of a class of 
lattice spin systems. To introduce the kind of problem we want to deal 
with, consider the case of a standard ferromagnetic spin system above its 
critical temperature Tc=inf{T: spontaneous magnetization m*(T)=O}. 
The following features are expected to hold for these systems: uniqueness of 
the Gibbs state, rapid decay of correlations, and analyticity of thermo- 
dynamic functions; but all these nice properties are far from being proved 
in general. The theory of the high-temperature pure phase has been 
developed in general only for very weakly coupled systems. 

The usual approaches, such as the Gallavotti-Miracle Sole (6) 
equations, are useful far from the critical point; in other words, they work 
only for temperatures T>~ To where To is strictly larger than Tc. The above 
high-temperature expansions are basically perturbation theories around a 
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reference system composed of independent spins. In order to get con- 
vergence of the series expansions, all the interactions (even among nearest 
neighbor spins) are required to be small and so the basic length scale in 
that case is just the lattice spacing. Let us call "intermediate temperatures" 
the values T in the range T~ < T < To. 

The aim of the present paper is to provide, in some cases, a pertur- 
bation theory that, at least in principle, can allow one to treat the 
intermediate temperature region. For technical reasons we limit ourselves 
to the two-dimensional case; moreover, for the sake of simplicity of the 
exposition, we only consider short-range spin systems with finite single-spin 
state. Generalizations including long-range, rapidly decaying interactions 
as well as general compact spin systems do not present any particular dif- 
ficulty. On the other hand, the extension of our approach to three or more 
dimensions certainly seems to be possible, but it is somehow involved from 
a geometric point of view. We hope to be able in the future to simplify 
these geometric aspects. In this paper we just present some useful ideas for 
investigating the intermediate temperature region. We cannot really prove 
a general convergence result for a perturbative theory in this range of tem- 
peratures. For the moment we only give a "constructive criterion" similar 
to the one introduced by Dobrushin and Shlosman(4): as in their approach, 
we reduce the problem of the convergence to an explicit condition that can 
be verified by means of a computer. 

This condition refers to the statistical mechanical behavior of a finite- 
size system. One can reasonably expect that for any temperature T >  Tc 
there exists a size so large that our condition is satisfied for this size (see 
below). In this way any temperature T >  Tc could be treated via a 
convergent cluster expansion, but of course the size needed to verify the 
condition would have to increase to infinity as T-* To. 

Let us now explain the basic ideas of our approach. The starting point 
of our analysis is the following, quite trivial, remark: a lattice system above 
its critical temperature Tc behaves like a weakly coupled system on a scale 
large with respect to the correlation length at this temperature. To show 
this behavior, we adopt a renormalization group philosophy. We apply to 
our system a "decimation procedure" (see, for instance, Ref. 9) and in this 
way we get a physically equivalent system whose effective interaction, in 
some particular circumstances, can be weaker than the original one. This 
effective decreasing of the interaction is expected to hold when the size of 
the blocks that are involved in the decimation transformation is of the 
same order of magnitude as the correlation length. 

As is well known, the renormalization group methods were introduced 
in order to study the critical phenomena, but there are also applications in 
which a finite number of renormalization group transformations are used 
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to analyze a given system in the proper finite length scale and in this way 
to reach the weak coupling region. A simple example is provided by the 
one-dimensional, short-range Ising systems. Even in this trivial case, where 
T,.=0, the usual cluster expansions converge absolutely only for T 
sufficiently large; nevertheless, for any T >  0, after a suitable decimation 
procedure on a scale L(T) (large in comparison with the inverse of the gap 
of the transfer matrix at the corresponding temperature), we get an effective 
interaction which is weak enough to allow the convergence of a cluster 
expansion. See Refs. 2 and 3 for more details (in those papers the more 
complicated case of one-dimensional systems with long-range interactions 
decaying like 1/r 2+~ was considered). Similar arguments are also used in 
percolation theory: see, for instance, Ref. 11. 

Let us now come back to the present work. As we have said, we give 
an explicit condition for the convergence; it is related to some particular 
finite-volume mixing properties: a "small parameter" for the expansion will 
be provided by a sort of finite-volume truncated correlation function. 
Moreover, the reference system around which we perform our perturbative 
expansion is not universal (as in the standard high-temperature expan- 
sions): it is model-dependent and is related to some finite-volume system 
with nontrivial correlations. 

The paper is organized as follows: in Section 2 we give the basic 
definitions, transform our original system into a polymer system by means 
of a block decimation procedure, and state the main result. In Section 3 we 
study some sufficient conditions for the convergence of the cluster expan- 
sions and discuss the equivalence with the conditions of Dobrushin and 
Shlosman. 

2. DEF IN IT IONS A N D  RESULTS 

Given A c Z  2, the configuration space in A is the set SA = {0, 1 . . . . .  n} A, 
n c N: a configuration in SA is a map ~rA: A ~ {0, i ..... n}. We denote by 
IAf the cardinality of a finite set A = Z  2. We suppose, given a potential 
U = { Ux, X c Z 2, IX[ < ~ }, Ux: Sx -~ R, such that: 

(i) 3ro > 0: Ux = 0 if diam X >  ro (finite range). 

(ii) VXc Z 2, IXI < ~ ,  Vk s Z2: Ux+k = Ux (translation invariance). 

Given a finite volume A ~ Z 2, we denote by H~(aA) the energy associated 
to the generic configuration an e SA multiplied by - l I T  (T being the 
temperature). It is given by 

1 
HA(aA)=---~ ~ Ux(ax) (2.1) 

X c A  
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Given two disjoint finite regions A, and A2, we define the interaction 
between A~ and A2 as the real function WA~,A: o n  S A I ( ~ S A 2  given by 

WA1,A2(('~AI, aA2)=HA~,oA2(aAt, aA2)--HA,(aA~)--Hm(aA2) (2.2) 

Of course WA~, A2- 0 if dist(A~, a 2 ) >  ro. 
The finite-volume Gibbs measure with "empty boundary conditions" 

(no interaction with the exterior) is given by 

exp HA(aa) 
#a(aA) = (2.3a) 

ZA 

ZA= ~ eXpHA(aA) (2.3b) 
~T A G S A 

Given a finite A = Z 2, we call the "outer boundary" of A the set 

OA = {k E ZZ\A: dist(k, A) <~ ro } (2.4) 

Given a spin configuration z ~ SeA the finite-volume Gibbs measure in A 
with boundary condition z is given by 

exp[HA(O'A) + WA,OA(ffA, "C)] 
#~(aA) = (2.5) z;  

Z~= ~ exp[HA(aA)+ WA,aA(aA, Z)] 
~A G SA 

The quantity ZA(Z~) is called the partition function in A with empty 
(z) boundary conditions. 

Let us now introduce a partition of Z 2 into blocks. Suppose L is an 
odd integer. For k -  (k~, k2) ~ Z 2 (kl, k2 ~ Z being the coordinates of k) 
with k~ + k2 even, we consider the set 

Ak={h=(hl,h2)~Z2: L - 1  L - 1  } ------~--q- kl.2L ~ hl,2 ~----j---k- kl,2L 

For k ~ (kl, k2) E Z 2 with kl + k2 odd we consider the set 

J~k = {h = (hi, h2) E: Z2:  - - - -  
L - 1  L-1 } 

t- kl,2L <~ hi.2 ~ ~ + kl,2 L 

Suppose l is an even integer <L.  For any k = (k l ,  k 2 ) e Z  2 we define 

C ={h_ihl, h2) Z2: t-1 L l-1 L } 
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If we associate to each lattice site k e Z 2 the square of edge 1 and center k, 
then the sets ,4k, /~k', k =  (kl, k2), k '=(k ' l ,  k'2), can be identified as the 
squares of edge L and centers x - ( k l L ,  kz L ), x '=- ( k'l L, k'2 L ), respectively, 
whereas Ck becomes the square of center x -  (k lL + L/2, kzL  + L/2) and 
edge I. 

The set of all the Ak and Bk constitutes a chessboard partition of Z2; 
any Ck overlaps two zt blocks and two B blocks. We define the blocks 

We have 

We will choose L, l 

L / 2 < I < . L -  1 (2.7) 

in such a way that the interaction between any two blocks of the same kind 
vanishes: L/2 > ro is a possible choice. Given a set O __%_ Z 2, we define 

a(g2) = {AklAkcO} 
b ( ~ ) =  { B ~ I B ~ }  

c(~)  = {C~I C ~ }  

a'(@) = {Ak [ dist(A~, t2) ~< 1 } 

b'(O) = {Bk I dist(Bk, O) ~< 1 } 

c'(O) = { Ck I dist(Ck, O) ~< 1 } 

(2.8) 

Given a set of blocks F (of A, B, or C type), we define the support P of F 
as the subset of Z 2 given by the union of the blocks of F. So we have 

a(a)= U A,= U A~ 
Ak c a(~Q) Ak c . Q  

Analogous definitionshold for ~;(O), 5(g?), 5'(O), ~'(f2), and ?'(g?). 

Notat ion .  ak, ilk, Yk will denote the spin configuration in Ak, Bk, 
Ck, respectively (ak ~ SA,, etc.). Given a set g? _c Z 2, c~a, fla, Ya will denote 
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spin configurations in 5(~), b(g2), ?(g2); a, fl, ~ denote spin configurations 
in the union of all A, B, C blocks, respectively: 

a ~ Sa(z2) etc. 

We often use a, fl, 7 to denote arguments of cylindrical functions that in 
fact depend only on the restriction of configurations to particular subsets 
that will be understood from the context. 

We set 
H(a) ------ HAk(ak) 

H(flk) =-- Hsk(flk) (2.9) 

H(yk) = Hck(?k) 

Given g2 ~ Z 2, we set 

Ha(a )=  ~ H(ak) 
Ak  E a(Y2 ) 

Ha(fl)-- ~ H(flk) (2.10) 
B k ~ b(U2) 

Ha(7) = ~. H(?k) 
Ck ~ C(Y~) 

Moreover, we denote by W(Tk, fl) the interaction between the block Ck 
and the contiguous B blocks and by W(Tk, aS) the interaction between the 
block Ck and the contiguous A and B blocks: 

(2.11) 
w(7~, ~/~)= Wc~,~,(c~)~,(ck)(~k, (~)) 

We set 

We(7, fl)= ~ W(Tk, fl) (2.12) 
Ck e c ( ~ )  

Analogous definitions hold for W(flk, a), Wa(fl, a), Wa(7, aft), etc. 
Notice that generally Wo(fl, a) # Wa(a, fl). 
To simplify the notation, we often write Z~ for Z~s~cA); Z~k for 

Z~k ~ sA k ; etc. 
We consider a system enclosed in a box A - A p  defined in the 

following way: let Qp be the square given by 

QP={( h-(hl'h2)~z2:---pl-lL<~hl2<~2 ' + ~- / -~)  } 
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Then 

Ap = a(Qp) w "~(Qp) w g(Qp) 

We notice that the shape of Ap is approximately but not exactly that of a 
square; in fact, Ap is obtained from Qp by eliminating the C blocks that 
intersect the boundary and are not completely contained in Qp. 

We consider empty boundary conditions and we want to compute the 
corresponding partition function in Ap [see Eq. (2.3b)]. By integrating first 
over the 7 variables, then over the fl's, and eventually over the ~'s, we 
transform our original spin system into a polymer system (see Refs. 8 
and 10). Notice that L and l are at the moment free parameters (with the 
restrictions L/2 <~ l < L - 1, L/2 > ro). We can write 

ZA= ~ exp[HA(aA)] 
o" A ~ S A  

= ~ exp[HA(00] ~ exp[HA(fl) + WA(fl, (Z)] 
B 

x ~ exp[HA(7) + WA(7, aft)] 
Y 

(2.13) 

[see Eqs. (2.9) (2.12)]. 
By performing the sum over the ~ variables, we get 

ZA = ~ e x p [ H A ( ~ ) ]  ~exp(HA(f l )+  WA(fl, ~)] I] Zck(fl,~ 
13 Ck ~ c ( A )  

where 

(2.14) 

Zck(fl , ct) = Z~]  = ~ exp[H(yk) + W(Tk, aft)] 
Yk 

(2.15) 

N o t a t i o n .  Given any finite set g 2 c Z  2 we order the A blocks in 
a(s according to the lexicographic order of their centers: (kl, k2)< 
(k'l, k[) if k~ <k'l or k~ =k'~, k2<k'2, and we write 

a(Q) = AI(Q), A2(~),... , AN(~) 

where N =  la(g2)] is the number of A blocks in a(~2). We do the same for 
b(Q), c(•), a'(~), b'(g2), c'(Q). 

So, given a block Ck, we have 

b(C~)=B~(C~), B~(C~); a(C~)=A,(C~), a2(c~) 
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F o r  f l l e  S B I ( C k )  , f12 e S B 2 ( C k )  , O~ 1 ~ S A I ( C k )  , ~2 ~ S A 2 ( C k ) ,  we write  explicitly 

Z c k ( f l  , 0~) = Z c k ( ~ l ,  f12' 0{1' ~2) 

We use the trivial identity 

where 

Zc,(Z,, ~ ,  ~1, ~)  
= [g,~,(/~, ~ ) +  1] 

Zck(J~l, O, 0~1, 0~2) Zck(O , ]~2, ~1, ~2) Zck(O, O, O, O) 
X 

Zc~(O, o, ~,, o) zr o, o, ~)  

__ Zck(J~l, /~2, ~1, ~2) Zck(O, O, 0~1, (X2) 

Zc,(B~, O, ~1, ~)  Z~(O, ~2, ~ ,  ~)  

x Zc~(O, O, ~ ,  O) Zc~(O, O, O, ~2) 1 
Zc~(O, O, ~1, ~2) Zc,(O, o, o, o) 

(2.16) 

(2.17) 

and the symbol 0 in the argument of Zck means that in the corresponding 
block we have chosen the configuration ax = 0. 

For example, in the case Zc~(fll, O, cq, c~2) we have the partition 
function in the block Ck with boundary conditions given by//1 in B~(CD, 0 
in Bz(Ck) , 0~ 1 in AI(Ck), ct2 in Az(Ck). 

Notice that here 0 only plays the role of an arbitrarily fixed reference 
configuration. By Eqs. (2.14)-(2.17) we get 

ZA= H Zck(O)~exp[HA(a)] 
CkEc(A) oc 

x 1-I [Zk(A, oO]-l~exp[HA(fl)+ WA(fl,~)] 
Ak~a(A) 13 

x 1] 2k(A, flk,~) I~ [ r  
B k ~ b(A ) Ck ~ c(A) 

(2.18) 

where Zk(A, ak) and 2k(A, ilk, c~) are defined in the following way: If Ak is 
in the bulk, namely dist(Ak, A")> 1 and CI(Ak), C2(Ak), C3(Ak), C4(Ak) 
are the blocks in c'(Ak) (in lexicographic order), then 

Zk(A, O~k) = 2k(O~k) 

= Zc,(O, O, O, ~k) ZQ(O, O, O, ~k) 

x Zc3(0, 0, c~ k, 0) Zc4(O, 0, ~k, 0) (2.19) 
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If Ak is adjacent to the boundary 0A, Zk(A, ak) is defined with the obvious 
modifications. For instance, for 

K = ( P - 1 2  ' 2 P - l )  

namely for the A block in the upright corner of Ap, we have 

2~(A, ak) = Zcl(O, O, O, ~k) 

Moreover, if B~ is in the bulk, ~1, a2, a3, a4 are the configurations in 
AI(Bk), Az(Bk), A3(Bk), An(Bk) that form the set a'(B~) and c'(Bk)= 
CI(Bk), C2(Bk), Cs(B~), C4(Bk), then 

2k(A, ilk, ~) - 2(/~k, ~) 

• Zc~(flk, 0, ~2, an) Zc4(flk, O, ~3, c~4) (2.20) 

Again for Bk adjacent to the boundary the expression of Z is modified in 
an obvious way. 

Now, for any given configuration ~ E Sa~z~) and for any Y2=b(A), 
consider the normalized measure #A,Q,~ on So given by 

exp[Ha(fl) + Wo(fl, e)] 1--[Bk~ 2~(A, fl~, ~) (2.21) 

[see Eq. (2.10)]. 
We notice that/~ is a product measure: 

#A,a,~(fl) = 1--[ #A,~k,,(flk) (2.22) 
Bk~t2 

with 

where 

exp[H(flk) + W(flk, ~)] 2k(A, ilk, a) 

2Bk(A, ~)= ~ exp[ H(flk) + W(flk, ~)] 2k(A, ilk, ~) 
Bk 

= ~ exp [H(flk) + W(flk, ~) 

+ y~ H(~) + W(~, ~, y) ]  
Ch ~ c'(Bk) c~ c(A) 

(2.23) 

(2.24) 

822/50/5-6-22 
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and 

We write for Bk in the bulk 

2~(A, ~) = 2~,(~1, ~2, ~3' ~4) (2.25) 

if 0~1, ~2, 0~3, 0~4 are, respectively, the four spin configurations in the four A 
blocks of a'(Bk). Again if Bg is adjacent to ~?A, we introduce the obvious 
changes. From Eqs. (2.18), (2.21)-(2.23), we get 

ZA= 1--[ Zq(O)~exp[HA(a)] ~ [Zk(A,c~k)'] 
Ckec(A ) o~ Akea(A) 

x ~ 2Bk(A, 0~ ) ~ ~#A,b'(r),~,(fl)I] ~ck(fl, a) (2.26) 
Bkeb(A) Fcc(A)  fl C h e f  

where in the sum over F we include the case F =  ~ and we set Iqck~e = 1. 
Now, for Bx in the bulk, we use the trivial identity 

= E~Bk(0~) + 13 

x 2~(~1, 0, 0, 0) 2~(0,  ~2, 0, 0) 

X ZBk(O , O, 0~3, O) ZBk(O , O, O, ~4) 

x E2~,k(0, 0, 0, 0)3-3 (2.27) 

where 

= 2Bk(O~l, 0~2, 0~3, ~4)['2Bk(0, 0, 0:, 0)3 3 

X E2~(Cq, 0, 0, 0) 2~(0,  ~2, 0, 0) 

X ZBk(O , O, ~3, O) ZBk(O , O, O, 0C4) ] - - 1  _ _  I (2.28) 

If B k is adjacent to the boundary, we use similar identities. Now, if A k is in 
the bulk and BI(Ak), B2(Ag), B3(Ak), Bn(Ak) are the four B blocks in 
b'(A~), we set 

z*(c~) = 2~,(0, 0, 0, ~ )  2~2(0, 0, ~ ,  0) 

• Zm(O, a~, O, O) 2m(~k, O, O, O) (2.29) 
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In general (for Ak not necessarily in the bulk) we call Z'~(A, c~k), qSB~(A, ~) 
the analogous quanities [Z*(A, ~ )  - Z* (~ ) ,  (b~(A, ~) = ~ ( ~ )  for A~ in 
the bulk]. 

From Eqs. (2.26)-(2.29) we get 

ZA= [ I  Zc~(O) [ I  E2B~(A, 0)] 3 
Ck E c(A ) B k E b(A ) 

x~-" 1-[ expEH(~k)] [Zk(A, ak) -1Z~(A, ctk) ] 
A k ~ a ( A )  

x ~ H ~Bk( A' ~) 
z l ~ b ( A )  Bk~Zt 

F = c ( A )  /3 C k ~ r  

where again the sum over A includes A = ~3 and 1-[~ ~ ~ = 1. 
Now we define the probability measure Vk.A on SA~ as 

exp[H(~k)] E2~(A, ~ ) ] - ~  Z'~(A, ~)  
Vk'A(Ctk) = Z~;, exp[H(ct~)] [Zk(A, ~ ) ]  1 Z~(A, or'k) 

We set 

(2.30) 

(2.31) 

Pt,,A = ~ exp[H(ak)] [2k(A, ~k)] - '  Z~(A, ~tk) (2.32) 
~k 

For any (2 ~ a(A) we introduce the product measure on So given by 

VA,O(~) = l--I V~,A(C~k) (2.33) 
A k ~ O  

By using Definitions 2.3.1-2.3.3, we can write 

Z A I] Zc~(O) I-[ [2B~(A, 0)] -3 
C k ~ c ( A )  B k ~ b ( A  ) 

A k ~ a ( A )  , d = b ( A )  F c c ( A )  

B k ~ A  fl C h e f  

(2.34) 

Now we are almost ready to write down our partition function in terms of 
a gas of polymers whose only interaction is a hard core exclusion. We see 
from Eqs. (2.17), (2.28) that a term ~Uc, corresponds to a four-body 
interaction among the A and B blocks adjacent to Ck and that the term 
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(I)Bk corresponds, for B k in the bulk, to a four-body interaction among the 
four A blocks adjacent to Bk. Moreover, looking at Eq. (2.21) we see that 
the measure #A,b'(P).~ depends on the spin configurations in all the A blocks 
adjacent to Z;'(~), namely in a(~ ' (r)) ;  then, so to say, a TCk term "extends 
its action to the whole set FF(75'(Ck)). So we define two kind of bonds: 

1. A Ck bond is the set of A and B blocks given by a'(Ck), b'(Ck), 
a'(~'(Ck)) c~ a(A). 

2. A B k bond is the set e rA blocks a(Bk)c~a(A ). 

The support 7" of a bond I is the subset of Z 2 obtained as the union of the 
blocks belonging to l [see definition after Eq. (2.8)]. 

D e f i n i t i o n  2.1. Two bonds 11,12 are said to be connected if 

D e f i n i t i o n  2.2. A polymer R is a set of bonds l~,..., lk that is con- 
nected in the sense that V/j: 1 ~< i<j<~k there exists a chain of connected 
bonds in R joining l~ to ly. The support /~ of a polymer R=l l , . . . ,  lk is 
simply /~= U~=IT,.: We call ~ the set of all the possible polymers with 
arbitrary support in Z 2 and ~A the set of all the polymers such that R = A. 

D e f i n i t i o n  2.3. Two polymers R~, Rj are said to be compatible if 
/~i c~/~j = #3. Otherwise they are called incompatible. We denote a Cx bond 
or a Bk bond simply by C k, Bk (with abuse of notation). 

D e f i n i t i o n  2.4. Given a polymer R = C k l , . . . , C k r  , Bh , , . . . ,Bh , ,  R e ' A ,  
we call "finite-volume activity of R in A" the quantity 

ffA=~VA,~<~)(~) [I 45sk(A, Ct)~l~A,b(k),~(fl) H gtc~(fl, a) (2.35) 
o~ Bk e R fl Ck E R 

For a generic polymer R = Ckl,..., Ckr, Bh~,'", Bhs, R e ~, we call simply the 
"activity of R" the quantity 

where: 

(i) 

with 

#(R)-= ~ v(a) H ~bBk(a) ~, #~(fl) [I ~ck(fl, a) (2.36) 
Bk E R ~ Cke  R 

v is the product measure o n  Sa(z2), 

Y ~ -  @ Y k  
Ak e a(Z 2) 

exp[H(ak)] [Z(ak)]-' Z*(mk) 
vk(~k) = 

- z*(~L) Z~iexp[H(~L)] [ Z ( ~ L ) ]  ' 
(2.37) 
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where Z, Z* are just the expression valid in the bulk given by Eqs. (2.19), 
(2.29). 

(ii) p is a function on Sa(zh with values the product measures on 
S~(z2) given by p~ = @k #~,~ with 

exp[H(fl~) + W(flk, ~)] 2(flk~) 
Pk.~(flk) 5Zp/,exp[H(fl2)+ W(flk, e)] ~ ' = ' Z(flk,  or) (2.38) 

and 2 is the expression valid in the bulk given by Eq. (2.20). 
Of course, if/~ is contained in the bulk of A, then ~A(R) =-- ~(R). 
By using Definitions 2.2 and 2.4, from Eq. (2.34), we get 

[ ]' ZA I1 Zq(O)  ]-[ 2~(A, 0) 3 l~ PA,k 
Ck E c(A)  Bk e b(A ) Ak e a(A ) 

= 1 + ~ ~ I~I (A(R;) (2.39) 
n>~l RI,. . . ,Rn~.~A i = 1  

We see from Eq. (2.39) that the (suitably normalized) partition function is 
equal to the partition function of a gas of polymers with activity ffA(R) 
whose only interaction, given by the compatibility condition, is a hard core 
exclusion. The normalization factor 

�9 / f f =  l-[ Zck(O) ~[ 2~k(A,O) 3 1-I PA,~ 
Cke~C(A) B k ~ b ( A  ) A k e a ( A )  

describes our "reference system." 
From Eqs. (2.3.5), (2.3.6) we immediately derive an estimate for the 

activity. For, suppose that there exists 2 > 0 such that 

sup sup I•Bk(A, ~)l ~ 2, sup Ir ~)1 ~< 2 (2.40) 
k ~ ~,fl 

then, if we denote by ]RI the number of bonds in R, namely for R =  
Ckl,..., Ckr, Bhl ..... Bhs: ]R] = r + s, we get 

I((R)I < 2 IRI, ICA(R)I < ;?RI 

The following theorem is true: 

T h e o r e m  2.5. Let 

n>~ l RI,...,RnC-.:.~A i = 1  

(2.41) 
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Let 
1 

(p T( R1,..., R,)= ~'T g~6(~" �9 .R,) 
( - -  1 ) # ~,~g~s in g 

where G(R~ ..... R,) is the set of connected graphs with n vertices (1,..., n) 
and edges ij corresponding to pairs RiRj such that k~ c~/~j r ~ (we set the 
sum equal to zero if G is empty and one if n = 1 ). If 

then: 

(i) 

1 x e -~ (2.42) 
2 < 4--3 1 +---~ ~ = ( 5 1 / 2 -  1)/2 

There exists a positive constant C(2), 

// 51/2 __ l \ l R I  
~ov(Rl,...,Rn) ~ ~ ( R i ) ~ C ( 2 ) ~ 2 e x p ~ )  (2.43) 

R I , . . . , R n 6 , ~  i =  1 
3Ri  = R 

(ii) ~A=exp  [ ~  ~ ~or(RI ..... Rn) f i  ~A(Ri) 1 (2.44) 
n>~l  RI, . . . ,Rn i = 1  

k i ~ A  

Proof. The proof can be obtained by the standard methods of the 
theory of the cluster expansion. We report here in a very short form the 
basic steps of the proof. We rely on the methods and results of Ref. 7. 

Consider the set F of finite configurations X =  R1 ..... R, of polymers in 
that are allowed to be incompatible and even to coincide. 

A finite configuration is a function X: ~ ~ Nw {0} such that N(X)= 
ZR~e X(R)< 00; X(R) is called "multiplicity" of R in X. We denote by 
the empty configuration given by X(R)= 0 YR. 

The sum X1 + X2 of two configurations is simply given by 

(Xl + X2)(R) = XI(R) + X2(R) 

Let F be the space of real functions f on F such that 

sup If(x)[ < ~ ,  n = O, 1,... 
N ( x )  = n 

The convolution product of f l ,  f2 e F is defined as 

(f l  * f2)(x) = ~ fl(X1)f2(X2) 
X l W X 2 = X  

Given f ~  F with f ( ~ )  r 0, f 1 is defined by 

f t * f = l  
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where 

l ( x ) =  {~ i f x = ~  
otherwise 

Let 

f i ( X )  = f i ( R  1 ..... Rn)  = f i  ~(Ri)  H z ( R i  , R j )  
i=1 i<j  

where 

z(R, R,) = {10 if otherwise R, R' compatible 

Let 

A x ( Y )  = ~ I ~ - I ( y 1 )  f i ( X +  Y2) (2 .45)  
Yl + Y2 = Y 

Let 

Im= sup 
RI,..., Rn Y 
m>~n>~l N(Y)=m n 

)r n 
IARl,.,J.(Y)l(2e )xi=, IR,I (2.46) 

where x is a positive constant to be fixed later. 
It is easy to see that the number of polymers containing a given A or B 

block such that ]R[ = l is bounded by 43 l. Now, by using exactly the same 
arguments that lead to the estimates given by Eqs. (4.27) and (4.32) of 
Ref. 7, we see that if, for some x > 0, 

432e x 
< X  

1 - 432e x 

then the statement (i) is true with x in place of (5 t / 2 -  1)/2. It is easy to see 
that to optimize the choice of x, we have to find the positive value of x that 
maximize the function 

X 
e -x (2.47) Y = l + x  

We get x = (51/2 _ 1 )/2. Of course, since we only control the activity via the 
estimate (2.41), the statement (i) holds with ~A in place of ~. Statement (ii) 
follows easily from (i) (see Ref. 7 for more details). We notice that we can 
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use the cluster expansion theory of Kotecky and Preiss and obtain a 
similar result with exactly the same condition (2.42) on 2 (see Ref. 10, 
p. 493). | 

We treated explicitly the partition function with zero boundary con- 
ditions, but it is clear that general boundary conditions as well as thermal 
averages of local observables can be treated by similar methods (see, for 
instance, Ref. 1). In particular, one can obtain a series expansion for any 
quantity of interest, such as the infinite-volume free energy or the 
correlation functions; exponential decay of truncated correlation functions 
and analyticity of thermodynamic functions and correlation functions can 
also be deduced by standard methods. 

3. SUFFIC IENT C O N D I T I O N S  FOR THE CONVERGENCE 

In this section we give sufficient conditions for the convergence of our 
cluster expension. From Eqs. (2.17), (2.28), (2.39), (2.41), (2.42), we see 
that, for the convergence, we need some factorization properties of 
partition functions in sitable regions. The result of the following 
proposition says that it is possible to deduce these properties from a very 
simple factorization condition that involves only two conditioning spins. 

Proposit ion 3.1. Let g2 be a finite, connected subset of Z, ~g2 its 
outer boundary [-see Eq. (2.4)], and v a given spin configuration in Of 2 

Let DI,..., Dz, I>~2, be disjoint subsets of 3s and 31,..., 6l some fixed 
spin configurations in D1,..., Dr, respectively. 

Let Z~l...ot(61,..., 6t, ~) be the partition function in (2 with boundary 
conditions given by (the restriction of) ~ in ~g2\U)= 1 Dj, and by bj in Dj, 
j =  1,..., L (Namely, we substitute r[Dj with 6j.) 

Suppose that the following condition is satisfied: 

Condition A. There exists a decreasing function /~: R+--* R + with 
lim x ~ co #(x) = 0 such that, for any finite ~ and for any pair of sites k, k' in 
c3~2, we havO 

sup [ z~,k'(ak'ak''z) Z/2(~) - 1 <#(dist(k,  k')) (3.1) 
/2 /2 

with Za(~) simply the partition function in s with boundary conditions z 
in 60;  then, V~, VD1 ..... Dr, 61 ..... 6t: 

/2 ~ a l  ' ~ , ) [ - Z / 2 ( ~ . ) ] / -  1 #(P)] 7(DI'''''D') [1 _ p(p)]~(D>..,D,)~< ZDI,..-.O,( 1 . . . . .  ~ [1 + 
FI,'=, zg,(aj,. 

(3.2) 
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where 

p =  min d i s t (D,  Dl) (3.3) 
l <~i<j<~l 

7(D, ..... D,)= ~ ID,I ID#I (3.4) 
l<~i<j<~l 

ProoL The proof is obtained by induction on the number 
N =  5~i IDol. We distinguish two cases: 

(i) We suppose that  the estimates (3.2) are true for D~ ..... Dr, ~,. . . ,  6z 
and we want  to prove them for D~ ..... D~_I, D~ with D~=Dlw{k} ,  
61,...,~t, 6~=(6t, ak), k being single site in c~(2\U~=ID j. We have 
(dropping the superscript f2) 

Z o  1 . . .D](a l  ..... ( a / ,  O'k) , " ~ ) [ Z ( - [ ) ] / - 1  

--ZDI---Dj((~I , '" ,  (~l ,  O'k), T')[ZDJ((TD,, O'k), 27)] l - 1  

[H~:  1 zo,,,)~(aj, (~o,, ,~), ~)3 z~,,((6,, ~) ,  ~) 

j= ~ kz~,,@, r) zo~((z~,, a~), r(k))] 

_ (Zo,,...,D,(61 ..... al, z(e)))[Z(z(e~)] l -  1 tl_ f Zor ak, z) Z(z) 
FI~=, zo,@, z ~k)) j=, Zoj(aj, z) Z~(ae, r) 

~< [1 + #(p)]~(O'"'"D')[1 + #(p)]Z~:] ID, I 

( >/[1 - ~(p)]~,,.-.,~',~[1 _ ~(p)]zJ:l ~o,~) (3.5) 

where Z(x k) = rx for x e ~?f2\k and r(k k) = ak, p = mini<  e<j<~ dist(D;, Dj), 
D~ = O i ,  i =  1,..., l -  1, D} =Dtw {k}. Since 

l--1 
y(D 1 . . . . .  D , ) +  ~ IDjl = y ( D t  ..... D~) 

j = l  

the proposit ion is proven in this case. 

(ii) We suppose that  the estimates (3.2) are true for D1 ..... D~, 
61,..., 6 t and we want  to prove them for D 1 ..... Dl, Dt+l  = (k}, 61, . ,  6t, cry, 
k being a single site in ~s 1 Di. We have 
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ZDI,..,D,(~I,'", ~l' ff k' T)[ Z(T) ] l 

f r i /  1 ZDj(~j, T ) ]  Zk(ffk, T) 

zD,,...,o,,,(61 ,..., 6 ,  ~r,, r){ [z(~r~, r)] }t-~ f i  ze/,~(6 j, ,r~, ~) z(~) 
/ - -1  [Is= ~ ZD,,,@, ak, ~) Z~j(a s, z) Z,(ak,  T) j = l  

ZDI,...,DI(a 1 ..... al ' z(k)){ CZ(z(k))] } l -  1 ~ ZDj, k(Sj ' ~k, "~) Z(Z) 
1-[j= 1 Zz)j(aj, z ~*)) i i  l . j = l  ZDj(~J ' z ) zk ( f f k ' 'C)  

~< [1 + tt(p)]v(D'"'D')[1 + #(p))]X~=, IDj* 

( >~ [1 -- tt(p)]~(D'""'D')[1 -- #(p)]X~=, ID;) (3.6) 

but 
l 

7(D1 ..... D,)+ ~ IDj]=y(D, ..... D, ,Dk)  
j--1 

and so we conclude the proof. | 

Corollary 3.2. Suppose that for the system described by the 
Hamiltonian given by Eq. (2.1) Condition A holds with 

lim #(x) x 2 = 0 (3.7) 
x ~ o o  

Then for L sufficiently large, the bounds (2.41), (2.42) are satisfied for the 
corresponding polymer model and so the result of Theorem 2.2 applies to 
our system. 

ProoL From definitions (2.17), (2.28), from Condition A, Eqs. (3.7), 
(2.7), and Proposition 3.1, we deduce that the inequalities (2.41) are 
satisfied with 

,~ = )~(L)= CI L2#(C2L) (3.8) 

for some positive constants CI, C2. Since by Eq. (3.7), 2(L)--*c_~ 0, we 
get the result. | 

Now we want to discuss the relationship between condition (3.1) and 
some conditions that have been used by Dobrushin and Shlosman to get 
uniqueness for lattice spin systems in the framework of their theory, which 
does not make use of the cluster expansion. Given a finite [2 c Z 2 and two 
single sites k, k' e ~[2, we can write 

n "C) Z~  # ~ ( f ( k ) f ( k ' ) )  Zk, k '(ak,  ffk', 
o - (3.9) Z~ (~rk, r) a Zk,(O'k,  , l;) ~ ( f ( k ) )  #*a(f(k')) 
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where #~ is the Gibbs measure in (2 with 
Eq. (2.5)] and if A ~k) A ~') are defined as 

boundary condition ~ [see 

A (~) = {x e (2 : dist(x, k) ~< r o } 
(3.10) 

A (k') = {x e (2: dist(x, k') ~< ro} 

then 
f/k): S~lkl ~ R, f�91 S~lk'~ ~ R 

are given by 

(3.11) 
f ( k ' ) (  a ~(k') ) = exp[ W ~(k.) k( ~ ~ , ) ,  a k, ) --  W A(~'),k( a ~(k'), Zk')] 

": {7 Let (2 =(2~ w(22 ((21 n(22 = ~ )  and let #a.al( a~ l ae2) denote the Gibbs 
conditional measure on Sa~ given aa2 in (22 (and z in ~(2). Given (23 strictly 
contained in (2~, let q~,a3(aa31a:)  denote the relativization of the measure 
#~,a~ to S m, namely 

r O" z O" qa.a3(a3]aa2) = ~ #a,a~( al\a3, O'a3]O'o2) (3.12) 
a~1\~23 e S~I\O 3 

Similarly, for (2* strictly contained in (2 

# ~ , a . ( a a . ) =  ~ #~(aa\~ . ,  aa . )  (3.13) 
.0 \ . 0 "  

We can write 

#}2(f(k) f(x')) = Z #}2,a\z(k"(aa\z( ~', I aa(k") 
oX2 

o'd(k)a d(k') 

- ~ qa.~,k,(a~, ,l a%',) #~ , j , ( a%. , )  

~31k') 

= u h ( f ~ )  #~(f~k'~) 

k 

ff zJ(klad(k')~Y](k' } 

• #a.~k,~(a~ k. ) #~.~,~,~(a~,~'~) fr162 (3.14) 
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Now suppose that the following condition B is satisfied. 

Condition B. 3 a decreasing function #* : R + ~ R + : V finite tO c Z 2, 
Vk, k' eOtO: 

v ,  (T sup [ q n  A (k)( A (k) O'A(k')) - -  q~,A~k ' ) ( f f  AIk)[ff~lk'))[ 
( Cr A(k )ff A(k')tr~(k')) 

~< #*(dist(k, k')) (3.15) 

Then by Eqs. (3.9), (3.14) we see that condition A is satisfied with 
# = M#*, where M is a suitable positive constant. On the other hand, it is 
easy to prove the inverse implication. 

For given tO, consider a set d in tO:dist(A, tOtO)= 1 (namely A is 
adjacent from the interior to the boundary) and a site y in 0tO. 

Given ~ e Sa(ma), ~y, {Try E (0 ,  1,..., n}, consider the relativization to S~ 
of the Gibbs measure in tO with boundary condition O-y in y and ~ in OtO\y 
(we simply write z to denote the restrictions %a, zaa\y as well): 

qa, s(a~ l ayz) = ~ #~a(aa\~, as) 
a~\a E Sa\a 

If 

f(aa, r)= e x p [ H a ( a a ) +  Wa,an(aa, ~)] 

and za\a(z) is the partition function in tO\A with boundary condition z, we 
can write [if dist(y, A) > r0] 

~ A , y  ~,vA~ (~y,  qa, s(o.a ]avz ) = f ( a a ,  z) 7a\s~,~ z) 
0" " E o ~ f ( a , ' C )  7 a \ a  ('~' Z) ~ d , y  ~,t" zl~ (Ty~ 

a'  I _ _ _ _  ( 3 . 1 6 )  

If condition A is satisfied with #: #(1) is sufficiently small, then from 
Eq. (3.16) and Proposition 3.1, we deduce, Va~, ay, a'y, z: 

v*(dist(A, y)) 
Iqa,~(a~ I Oy "IS) - qa.s(a~ [ a~v)l ~< 4 1 - v*(dist(A, y))2 (3.17) 

where 

v* = max[(1 + ~#)l~l _ 1, 1 - ( 1  _ 3~t#)lat] . ~ t  
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for a suitable positive constant M, and so Condition B is satisfied with 
# * = h 4 v *  (~r is a suitable constant). Condition B is implied, with 
#*(p) = 0-4ro 2 e x p ( - T p  ), by condition IIIc of Ref. 5: 

Condi t ion  IIIc o f  Ref .  5. V finite f2 c Z 2, VA c f2, y ~ c?f2, T ~ Sa~\y 

sup lqx~,~j(a~[CryV)-q~,~(cr~lcr'yr)l ~<0expE-Tdist(A,  y ) ]  (3.18) 
ffA, fly, fly 

I-see Eq. (2.24) of Ref. 5]. In Ref. 5 the authors prove analyticity properties 
on the basis of ten equivalent conditions, one of which is Condition IIIc. In 
particular, they give a so-called "constructive condition" (IIIe) in which the 
bound (3.18) is required to hold only for I•1 ~<g, for some N that can be 
explicitly estimated. The authors remark that this explicit estimate involves 
very complicated calculations. In our case, if we assume Condition B, 
with #* like # in Eq. (3.7) only for IOl ~<g, it is very easy to estimate 
the minimal N for which we get analyticity: it is sufficient to use 
Proposition 3.1 for IOl ~<N and then for 2 as in Eq. (3.8) the inequality 
(2.41). 

To conclude, we can say that our finite-size condition [Eqs. (2.40), 
(2.42)] can, at least in principle, be used to get a computer-assisted proof 
of analyticity and it is reasonable that for sufficiently large size it works in 
the intermediate temperature region. 

On the other hand, it seems to be possible to prove theoretically for 
general ferromagnetic spin systems over Tc some weaker form of condition 
A and to improve our methods in order to get a general theoretical result. 

NOTE A D D E D  

After the completion of this work I became aware of an interesting 
new paper by Dobrushin and Shlosman (12) in which they give explicit 
estimates of the minimal sizes for which their constructive condition has to 
be satisfied in order to get analyticity. 
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